Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection.

نویسندگان

  • Jarmila Pittermann
  • John S Sperry
  • Uwe G Hacke
  • James K Wheeler
  • Elzard H Sikkema
چکیده

Plant xylem must balance efficient delivery of water to the canopy against protection from air entry into the conduits via air-seeding. We investigated the relationship between tracheid allometry, end wall pitting, safety from air-seeding, and the hydraulic efficiency of conifer wood in order to better understand the trade-offs between effective transport and protection against air entry. Root and stem wood were sampled from conifers belonging to the Pinaceae, Cupressaceae, Podocarpaceae, and Araucariaceae. Hydraulic resistivity of tracheids decreased with increasing tracheid diameter and width, with 64 ± 4% residing in the end wall pitting regardless of tracheid size or phylogenetic affinity. This end-wall percentage was consistent with a near-optimal scaling between tracheid diameter and length that minimized flow resistance for a given tracheid length. There was no evidence that tracheid size and hydraulic efficiency were constrained by the role of the pits in protecting against cavitation by air-seeding. An increase in pit area resistance with safety from cavitation was observed only for species of the northern hemisphere (Pinaceae and Cupressaceae), but this variable was independent of tracheid size, and the increase in pit resistance did not significantly influence tracheid resistance. In contrast to recent work on angiosperm vessels, protection against air-seeding in conifer tracheids appears to be uncoupled from conduit size and conducting efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem.

Wood structure and function of juvenile wood from 18 conifer species from four conifer families (Araucariaceae, Cupressaceae, Pinaceae and Podocarpaceae) were examined for a trade-off between wood reinforcement and hydraulic efficiency. Wood density and tracheid 'thickness-to-span' ratio were used as anatomical proxies for mechanical properties. The thickness:span represented the ratio of trach...

متن کامل

Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns.

The ferns comprise one of the most ancient tracheophytic plant lineages, and occupy habitats ranging from tundra to deserts and the equatorial tropics. Like their nearest relatives the conifers, modern ferns possess tracheid-based xylem but the structure-function relationships of fern xylem are poorly understood. Here, we sampled the fronds (megaphylls) of 16 species across the fern phylogeny, ...

متن کامل

Embolism resistance of three boreal conifer species varies with pit structure.

While tracheid size of conifers is often a good proxy of water transport efficiency, correlations between conifer wood structure and transport safety remain poorly understood. It is hypothesized that at least some of the variation in bordered pit and tracheid structure is associated with both transport efficiency and embolism resistance. Stem and root samples from three boreal Pinaceae species ...

متن کامل

Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species

doi: 10.1111/j.1399-3054.2006.00644.x Previous studies indicate that conifers are vulnerable to cavitation induced by drought but in many cases, not by freezing. Rarely have vulnerability to drought and freezing stress been studied together, even though both influence plant physiology and the abundance and distribution of plants in many regions of the world. We studied vulnerability to droughta...

متن کامل

Size and function in conifer tracheids and angiosperm vessels.

The wide size range of conifer tracheids and angiosperm vessels has important consequences for function. In both conduit types, bigger is better for conducting efficiency. The gain in efficiency with size is maximized by the control of conduit shape, which balances end-wall and lumen resistances. Although vessels are an order of magnitude longer than tracheids of the same diameter, they are not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of botany

دوره 93 9  شماره 

صفحات  -

تاریخ انتشار 2006